
M3: A Hardware/Operating-System Co-Design
to Tame Heterogeneous Manycores

Nils Asmussen† Marcus Völp†* Benedikt Nöthen‡ Hermann Härtig† Gerhard Fettweis‡

Operating-Systems Chair† and Vodafone Chair Mobile Communications Systems‡

Technische Universität Dresden
Nöthnitzer Straße 46, 01187 Dresden, Germany

{nils.asmussen,marcus.voelp,benedikt.noethen,hermann.haertig,gerhard.fettweis}@tu-dresden.de

Abstract
In the last decade, the number of available cores increased
and heterogeneity grew. In this work, we ask the question
whether the design of the current operating systems (OSes)
is still appropriate if these trends continue and lead to
abundantly available but heterogeneous cores, or whether
it forces a fundamental rethinking of how systems are de-
signed. We argue that:

1. hiding heterogeneity behind a common hardware inter-
face unifies, to a large extent, the control and coordina-
tion of cores and accelerators in the OS,

2. isolating at the network-on-chip rather than with pro-
cessor features (like privileged mode, memory manage-
ment unit, . . .), allows running untrusted code on arbi-
trary cores, and

3. providing OS services via protocols over the network-on-
chip, instead of via system calls, makes them accessible
to arbitrary types of cores as well.

In summary, this turns accelerators into first-class citizens
and enables a single and convenient programming environ-
ment for all cores without the need to trust any application.

In this paper, we introduce network-on-chip-level isola-
tion, present the design of our microkernel-based OS, M3,
and the common hardware interface, and evaluate the perfor-
mance of our prototype in comparison to Linux. A bit sur-
prising, without using accelerators, M3 outperforms Linux
in some application-level benchmarks by more than a factor
of five.

* New affiliation: SnT-CritiX, University of Luxembourg

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

ASPLOS ’16 April 2–6, 2016, Atlanta, Georgia, USA.
Copyright c© 2016 ACM 978-1-4503-4091-5/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2872362.2872371

Categories and Subject Descriptors C.1.3 [Other Archi-
tecture Styles]: Heterogeneous (hybrid) systems; D.4.7
[Organization and Design]: Distributed systems; D.4.6
[Security and Protection]: Access controls

Keywords Heterogeneous architectures; Accelerators; On-
chip networks; Operating systems; Capabilities

1. Introduction
In recent years, computer architecture followed two major
trends: increased parallelism and heterogeneity. We expect
that future systems will continue to follow these trends and
confront us with even more heterogeneous cores.

1.1 Heterogeneity
Today, workloads in many application areas run on com-
puter systems, which combine general-purpose CPUs and
special-purpose accelerators to achieve the required perfor-
mance and energy efficiency. For example, in addition to
CPU/GPU combinations, which have become mainstream in
many daily life devices, we find accelerators to assist in cryp-
tography [21], multimedia [47], object caching [28], signal
processing [5, 37], the processing of massive multidimen-
sional data-sets [46] and machine learning [30], to mention
just a few.

In their respective domains, special-purpose solutions
show large performance and energy advantages over general-
purpose solutions. For example, Lim et al. have presented an
FPGA-based accelerator for memcached [28] that shows a
16 times performance-per-watt improvement over an Atom
CPU. Liu et al. demonstrated that an machine learning ac-
celerator [30] can achieve 20% better performance than a
GPU-based solution, while requiring 128 times less energy.

Increased leakage currents and limited heat dissipation
capabilities already make it impossible to operate all parts
of a chip at full frequency over extended periods of time.
To mitigate these effects, which lead to dark silicon, com-
puter architects already proposed mixtures of largely hetero-
geneous processing elements to accelerate frequently recur-
ring patterns in general-purpose workloads [43], and also to

189

integrate special-purpose accelerators [18] for specific appli-
cation domains.

In summary, we expect hardware platforms to continue to
increase in heterogeneity. Unfortunately, current operating-
systems (OSes) rely on specific hardware features such as
a privileged mode, exceptions, and a memory management
unit (MMU). Furthermore, the OS design requires a kernel,
available on every core that should be a first-class citizen,
i.e., which has access to OS services and can run untrusted
code. Of course, special-purpose cores could be equipped
with all the hardware features required by current OSes to
make them first-class. However, this leads either to large
porting efforts for the OS kernel because it needs to run
on various different cores. Or it forces hardware vendors to
produce cores that are equal at the architectural level, which
limits the benefits of accelerators since their advantages stem
also from their architectural differences to general-purpose
cores.

1.2 Second-class vs. First-class Citizens
Accelerators are currently treated as devices, i.e., second-
class citizens. Although this model is suitable for timers,
network cards or storage devices, we consider it less appro-
priate for accelerators that execute software or for reconfig-
urable circuits like FPGAs, which are becoming increasingly
common. At first, as more and more accelerators execute in-
creasingly complex software, their need for OS services like
filesystems, network stacks or inter-process communication
mechanisms increases. Second, applications might want to
offload parts of their computation onto accelerators and of
course, do not want to switch to a completely different and
limited programming environment. We therefore believe that
it is crucial to remove the barrier between general-purpose
cores and accelerators and treat both as first-class citizens.

1.3 Abundantly Available Cores
Although the increase of single-thread performance has
mostly stopped due to the break-down of Dennard scal-
ing [12], Moore’s law still leads to about twice as many
integrated transistors every 18 months, which are used to
integrate more cores on a chip as a response to the stop of
Dennard scaling. Today, there are already research projects
with hundreds [3] to even one thousand [24] cores on a chip
and we believe that chips with that many cores will become
commercially available in the future. These large number of
cores, while probably not all usable at all times due to power
and heat constraints, offer new opportunities and trade offs.
For example, having enough cores allows the OS to place
each application on its own core. By cleverly balancing the
load and powering off unused cores, the OS can make sure
that it stays within the power budget. This approach is bene-
ficial because it avoids both the direct and the indirect costs
of context switches. That is, applications no longer share
hardware resources like registers, caches, and translation
lookaside buffers (TLBs).

1.4 Contributions
Our goals are therefore to, at first, integrate arbitrary cores
as first-class citizens into the system, and second, lever-
age the fact that cores are abundantly available. To achieve
that, we integrate cores and memories into a packet-switched
network-on-chip (NoC) and equip each core with a data
transfer unit (DTU) as the common hardware component.
The DTU, offering message passing and memory access, is
thereby the only means for the core to communicate with
other cores or memories. Thus, controlling the DTU allows
us to control the core and therefore also the software run-
ning on the core. OS services like filesystems and network
stacks are provided based on a core-neutral communication
protocol between DTUs. Our contributions are as follows:

1. We introduce data transfer units and the concept of NoC-
level isolation, which enables uniform control and coor-
dination of heterogeneous cores.

2. We evaluate new OS design opportunities and trade-offs
that become possible through NoC-level isolation and
abundantly available cores.

3. We describe the design of our OS prototype, M3, where
we combine the above findings into a microkernel-based
system. As a proof of concept, we implemented a filesys-
tem and pipes. M3 is available as open source at https:
//github.com/TUD-OS/M3.

4. Finally, we evaluate the performance of our prototype to
show the feasibility of the OS design. By trading system
utilization for supporting heterogeneous cores and by
accelerating data transfers via the DTU, M3 outperforms
Linux as a representative of a traditional OS by more than
a factor of five in some application-level benchmarks.

The rest of the paper is organized as follows: After re-
lating this paper to previous work in Section 2, we intro-
duce our approach to tame heterogeneous manycores based
on NoC-level isolation and DTUs in Section 3. In Section 4,
we detail our hardware/OS co-design of the DTU and the
OS prototype M3. Finally, we evaluate our prototype in Sec-
tion 5, conclude in Section 6, and sketch directions for future
work in Section 7.

2. Related Work
As this paper is about a hardware/operating-system co-
design, the related work can be split into similar hardware
components and similar OS designs.

2.1 Hardware-Level Isolation and Message Passing
At first, memory management units (MMUs) and memory
protection units (MPUs) are related to the DTU described in
this paper. They are typically tightly integrated with the core
architecture and used for memory translation and/or protec-
tion, controlled by the OS kernel. More recently, IOMMUs
have been introduced to add translation and protection to I/O

190

https://github.com/TUD-OS/M3
https://github.com/TUD-OS/M3

OS kernel

GPC DSP FPGA

App App App App

GPC DTU DTU DTU

Linux Popcorn Linux, K2, Barrelfish, fos M3NIX, Helios

Prot. GPC Prot. ...

App App

GPC1 Prot.

OS kernel

App Serv

GPC2 Prot.

OS kernel OS kernel App OS service
...

...

Figure 1. Design space for heterogeneity, enforcing isolation (red lines) and providing OS services.

devices. Furthermore, hardware components have been pro-
posed to connect heterogeneous cores over a NoC in a secure
way [16, 36]. However, all of them are dealing with memory
accesses only. Instead, the purpose of the DTU is to abstract
from the heterogeneity of the cores and provide the features
that are required to make all cores first-class citizens. In par-
ticular, this includes the ability to perform secure and effi-
cient message passing between cores.

Besides approaches for memory accesses, various work [4,
20, 25, 31, 34] has been done on (user-level) message pass-
ing architectures. For example, Alpert et al. describe pro-
tected message passing in userland on the Shrimp multi-
computer [4]. Protection is thereby based on virtual memory
support in the core. Similarly, the MAGIC component in the
FLASH multiprocessor [20, 25], is designed as a core that
executes software to allow the implementation of a variety
of protocols like cache coherency. It does also require co-
operation with an OS kernel. In summary, all approaches
rely on core-specific features like virtual memory and/or an
OS kernel on the sending/receiving core for special cases.
Since our goal is to integrate arbitrary cores into the sys-
tem and simple accelerators in particular, the DTU has to
be core-agnostic and needs to handle all operations without
involving an OS kernel on the same core.

2.2 Operating Systems
When exploring related OS work and comparing it with our
design, we find different approaches to heterogeneity, iso-
lation, and providing OS services. As depicted in Figure 1,
traditional OSes like Linux are built to execute a shared ker-
nel on homogeneous cores. Isolation between the OS kernel
and applications and between applications is thereby imple-
mented via processor features like a privileged mode, excep-
tions, and MMUs (denoted by Prot. for protection features
in the figure) that we find in general-purpose cores (GPC).
OS services are offered via system calls that perform a mode
switch from user mode into privileged mode.

To let Linux support heterogeneous cores, approaches
like Popcorn Linux [7] and K2 [29] have been suggested,
which run multiple Linux instances on potentially heteroge-
neous cores. Since they are still based on Linux running on
general-purpose cores, isolation and OS services are realized
in the traditional way. Like with standard Linux, accelerators
are treated as devices.

Moving further to the right, we find the multi-kernel de-
sign with Barrelfish [8] as one implementation. Barrelfish
aims to support many heterogeneous cores as well and de-
signs the OS as a distributed system to improve scalability.
Similarly, fos [44] targets manycores and thus introduces the
concept of service fleets that are spread among the whole
chip. Both Barrelfish and fos use message passing to access
OS services that may run on a different core. However, the
design of Barrelfish and fos is based on the traditional way of
isolation and executing a kernel on every core, required for
message passing and resource access in case of fos and for
memory isolation and capability management in Barrelfish.

NIX [6], based on Plan 9 [35], relaxes the requirement on
executing a kernel on every core by introducing application
cores. In contrast to still existing time sharing cores, appli-
cation cores do not execute a kernel to prevent OS noise, i.e.,
interference with the application caused by the OS through
e.g., interrupt handling. Application cores can still access OS
services by communicating via message passing with a time
sharing core. Although NIX supports cores that are not able
to execute a kernel, the communication in NIX is based on
shared memory and isolation requires MMUs on all cores.
In contrast to NIX, our approach does not rely on this.

Helios [33], a derivative from Singularity [14], reduces
the requirements one step further by using software isola-
tion instead of address space protection. Thereby, neither an
MMU nor a privileged mode is required. However, Helios
still executes a satellite kernel on every core and requires a
timer device, an interrupt controller, exceptions, and a quite
large amount of memory (at least 32 MiB).

In this paper, we evaluate the rightmost point in this spec-
trum (see Figure 1) by removing all requirements on pro-
cessor features. We achieve that by abstracting the hetero-
geneity of the cores via a common hardware component per
core, called DTU, which contains all the features that are re-
quired for an OS to treat the attached core as a first-class
citizen. This allows us to hide any kind of processor, in-
cluding very simple ones, behind a DTU. For example, a
general-purpose core, a digital signal processor (DSP), an
application-specific integrated circuit (ASIC), an FPGA, etc.
Based on the DTU, we isolate at the NoC-level by remotely
controlling the communication capabilities of DTUs and of-
fer OS services via core-neutral communication protocols.
In this paper, we use the term processing element (PE) to de-

191

note the combination of core, local memory (scratchpad or
cache) and DTU.

Similar to M3, GPUfs [40], GPUnet [22] and PTask [39]
strive to make GPUs first-class citizens. However, they
specifically target GPUs, while we aim to find a general
solution to integrate arbitrary PEs as first-class citizens.

3. Taming Heterogeneous Manycores
To address the problem of heterogeneous PEs, we move the
kernel to dedicated PEs and thereby let the applications run
on bare-metal, as shown in Figure 1. That is, no applications
are running on the kernel PEs, while no kernel is running on
the application PEs. Similar to previous works [6, 10, 41],
system calls are not handled on the same core by performing
a mode switch, but by sending a message over the DTU to
the corresponding kernel PE. However, the main motivation
in the mentioned works is the improvement of performance,
while ours is the support of heterogeneous cores.

Despite the differences between the kernel in M3 and a
traditional kernel, they share their main responsibility: mak-
ing the final decision of whether an operation is allowed or
not. Typically, a traditional kernel, in contrast to applica-
tions, is running in the privileged processor mode. With M3,
privilege is not defined by the processor mode, but by the
DTU. Similarly to the processor mode, all DTUs are priv-
ileged at boot, i.e., any communication is allowed. During
boot, the DTUs of the application PEs are downgraded by
the kernel to become unprivileged. Due to the similarities to
traditional kernels, we also use the term kernel for the en-
tity that exercises the mentioned responsibility and the term
kernel PE for naming the entire PE on which this entity runs.

3.1 Data Transfer Unit
In our approach, a DTU is a small hardware component that
is present in each PE and thereby serves two purposes:

1. It is the only interface for the PE to PE-external resources
like other PEs or memories.

2. It abstracts from the heterogeneity of the PEs to allow a
uniform control of different PEs.

For our OS design, the DTU needs to support both mes-
sage passing and remote memory access. Message passing is
essential for the PE-neutral protocols used to provide filesys-
tems, network stacks, access to devices and so on, while
memory access is required to use PE-external memories.

The DTU should be attached to the core as a device with
memory mapped registers. In this way, the DTU can be core-
agnostic and existing instruction set architectures can be re-
used without any change.

3.2 NoC-level Isolation
Since we assume that all PEs are potentially different, the
processor features used for isolation in classical OSes are
different in every PE or are not even available. Therefore,

we enforce isolation at the NoC-level instead of within one
core. That is, applications run on bare-metal and can thus use
their core in any way they like. Instead, to isolate applica-
tions, we control the communication capabilities of the PE,
i.e., control the exchange of information with other PEs or
memories. Since the DTU is the only interface to other PEs
or memories, controlling the DTU suffices to control the ap-
plication on that PE. This is done by a kernel, running on a
different PE. In this way, a kernel isolates the applications at
the NoC-level by remotely controlling their DTUs.

3.3 Abundantly Available Cores
Although we expect that future platforms will have many
cores, we do not assume that, at any point in time, cores
outnumber the threads of execution in the system. Instead,
we plan to support the multiplexing of a core1 among a
group of threads that can run on that same core, but to not
context-switch periodically, but only if required. With this,
we optimize for the common case with abundantly available
cores: two interacting applications are running on separate
cores at the same time and can thus directly communicate
with each other. That is, communication does not mean to
transition the execution from the sender to the receiver, but
both are running in parallel and are putting their cores in
a low power state when waiting. For a communication that
involves longer wait times, we plan to inform the kernel
about a potentially reusable core, which can then perform
a context switch to another thread of execution, if necessary.
In this case, the kernel needs to switch back to the old thread
before the interrupted communication can be completed.
We leave the details of context switching (and migration,
because it requires the same mechanism) as future work.

3.4 Discussion
This approach has several advantages:

1. Applications do not share resources like registers, caches
or TLBs with kernels and, in the common case, not with
other applications as well. Therefore, when performing
system calls, registers do not need to be saved or restored
and, when the call is finished, cache or TLB misses do
not happen because no entries have been evicted.

2. As no kernel is running on application PEs, support-
ing arbitrary PEs becomes much easier. First, the kernel
PEs could be homogeneous. Second, only the application
needs to be compiled for the targeted PE(s) and, if de-
sired, be prepared for hardware features it wants to make
use of. Thus, new application PEs can be added without
requiring any change to a kernel.

3. Furthermore, as no application is running on the kernel
PEs, a kernel does not need to run in privileged mode,
support context switching or use paging to isolate itself

1 This will be restricted to the subset of the cores that support it, i.e., some
accelerators might be excluded.

192

from the application. Instead, the only hardware feature
that a kernel needs to support is the DTU to communicate
with the applications and control them from the outside.

4. OS kernels and services do not necessarily benefit from
the same hardware features (instruction extensions, num-
ber of functional units, memory architecture etc.) as the
application. Giving them different PEs allows to acceler-
ate both in the best possible way.

The disadvantage of this design is the decrease in system
utilization, because a PE is idling (for a certain time) if the
application on that PE is waiting for an incoming message or
the completion of a memory transfer. However, it is expected
that the power consumption and heat generation will be the
limiting factors in the future. That is, even if an OS could
fully utilize all PEs at all times, physical limits will prevent
it from doing so. Furthermore, abundantly available cores
will allow the OS in most cases to not reuse the core for a
different application immediately, since enough free cores
are available. For this reason we believe that this can be
relaxed in favor of supporting heterogeneous cores (which
are controlled remotely) and an increase in performance,
because the state of the application (e.g., in the cache and
TLB) is kept during most communications.

Note that, despite the separation in kernel PEs and appli-
cation PEs, it does not mean that they require different cores.
In fact, the kernel of our prototype implementation does not
need any specific processor feature and can thus run on any
core, where a DTU is attached and for which a C++ compiler
is available. But of course our approach allows to specialize
a kernel PE by e.g., adding specific instructions to the core
to accelerate certain operations, if desired.

4. Design and Implementation
To evaluate the feasibility of the described approach, we
built a prototype for both the DTU and the OS. The DTU was
thereby co-designed with the OS to reflect the requirements
of the OS in the feature-set of the DTU. In particular, our
goal is to treat all PEs as first-class citizens whether or not
they support OS kernels. For example, the core might have
no privileged mode or memory protection to protect a kernel.
Another reason is that the core can be an FPGA that should
only host the circuit to accelerate a specific computation.

4.1 Prototype Platform
To investigate how an OS could look like if PEs do not
support an OS kernel, we chose to use the Tomahawk plat-
form [5], which is a multiprocessor system-on-a-chip (MP-
SoC) for mobile communication applications. Tomahawk
consists of multiple PEs, connected over a network-on-chip
and one DRAM module. The PEs are Xtensa RISC cores that
do not have a privileged mode and also no MMU. Further-
more, they employ a scratchpad memory (SPM) instead of
caches as the only directly addressable memory. SPM is of-

ten used for accelerators, because in contrast to caches, they
can be tailored to the accelerators needs by adding multiple
independent SRAM banks to perform multiple accesses in
parallel [11].

M3 supports two versions of Tomahawk: The first is a
silicon chip, which employs 8 PEs, each having a SPM of
32 KiB for code and 32 KiB for data and a predecessor
of the here described DTU, that does only support data ex-
change, but no message passing with the features described
in Section 4.4. The second is cycle-accurate simulator of
Tomahawk, based on the Cadence Xtensa SystemC frame-
work [9], that we modified to include the DTU described
in this paper. It supports an arbitrary number of PEs, each
having a SPM of 64 KiB for code and 64 KiB for data. Al-
though this version of Tomahawk is currently only available
as a simulator, it has already been sent to the chip manufac-
turer and will thus also be available as a silicon chip next
year. M3 runs on both Tomahawk versions, but we describe
and evaluate the simulator-based version because it supports
more PEs and employs the described DTU (on the current
hardware, some features need to be emulated in software).

4.2 Limitations
Our prototype platform has currently two major limitations:

1. Instead of a cache, a core employs only a small SPM,
limiting the size of code and data and thus the complex-
ity of applications that can run on it (without manually
managing it like a cache).

2. Virtual memory is not supported, but a core accesses the
SPM and external memory with physical addresses. The
SPM can be accessed directly with load/store instruc-
tions, whereas the external DRAM (or other PE’s SPMs)
requires an explicit transfer into the SPM over the DTU
first, leading to a distributed memory architecture.

However, to us, this was not a limitation, but a feature:
simple accelerators, which we strive to support in particular,
typically lack these features. Starting with a platform that
consists of simple accelerator-like cores only, allowed us to
explore how to design the system in a way that these cores
are supported as first-class citizens. In future work, we will
address these limitations to optionally support caches and
virtual memory, as described in Section 7.

4.3 Overview and Terminology
Before diving into the details, this section briefly sketches
the general concepts of isolation, communication, and re-
mote memory access, and introduces the terminology used
in this paper. At the hardware side, as shown in Figure 2, the
DTU consists of a number of endpoints (EPs). Each endpoint
can be configured to be a send endpoint, a receive endpoint,
or a memory endpoint. The configuration registers (buffer,
target, credits, and label) are only writable by ker-
nel PEs, while the data register is writable by the applica-
tion PE as well. Initially, all registers are writable at all PEs

193

and the kernels downgrade the permissions at the application
PEs during boot2. To let applications communicate, a kernel
establishes communication channels by remotely configur-
ing endpoints. Afterwards, no kernel PE is involved, but the
sender and receiver communicate directly (as indicated by
the thick arrow in Figure 2).

DTU DTU
DTU adds

Core

Mem
ringb.

credits

labeltarget

data

EP

credits

labeltarget

data

Receiver: PE1 Sender: PE2

channel

Kernel: PE0

Send
Gate

DTU

Mem

CoreCore

EP

configuration of endpoints to establish a channel

credits

labeltarget

data

VPE1: PE1

...

header data

Recv Cap

buffer buffer buffer

Recv
Gate

VPE2: PE2

Send CapM
em

...

EP

Figure 2. Communication between two PEs via the DTUs, set up by a kernel.
The receiver has a receive endpoint configured for receiving messages and the
sender has a send endpoint for sending messages to the receive endpoint.

At the software side, the kernels pro-
vide Virtual Processing Elements (VPEs)
as an abstraction for PEs. Applications
consist of at least one VPE, whereas each
VPE is assigned to exactly one PE at any
point in time. The kernels use capabil-
ities [13] to manage the permissions of
the VPEs by maintaining a capability ta-
ble per VPE. In Figure 2, the receiver uses
a receive gate object, which is associated
with the receive capability and bound to a
receive endpoint. Analogously, the sender
uses a send gate associated with the send
capability and bound to a send endpoint.
For memory access, the concept is anal-
ogous, but the target register at the send
endpoint specifies a region of memory in-
stead of a receive endpoint.

4.4 Data Transfer Unit
For our prototype, we built a DTU and integrated one in-
stance in each PE of the Tomahawk platform.

4.4.1 Endpoints
To support both memory access and message-based commu-
nication we provide endpoints to establish communication
channels. Each DTU contains a set of endpoints, which can
be configured for different operations.

With a send endpoint, a message can be sent by speci-
fying the address and size of the data to send via the data

register. This requires that the target register has been con-
figured to point to the receive endpoint and that the registers
credits and label have been set accordingly (the follow-
ing sections provide more detail on them). The buffer reg-
ister is not used for send endpoints.

For receive endpoints, the buffer register specifies the
location and size of the ringbuffer, which can only be done
by a kernel PE (see Section 4.4.4). Received messages are
placed into the ringbuffer by the DTU without involving any
software. If permitted by the sender, a reply can be send via
the data register. The other registers are unused.

For memory endpoints, the target register specifies the
remote memory region and the permissions (read or write).
When reading, the data register denotes the location the
read data should be transferred to, while when writing, it
denotes the data to write. Label and credits are not used in

2 If desired, a kernel can also upgrade the permissions of an application PE
again to turn it into a kernel PE, but this is not done in our prototype.

this case. As the memory transfer occurs without involving
an OS kernel and without involving software on the passive
side (where the data is read from or written to), it is a form
of RDMA.

An endpoint is therefore a hardware representation of a
capability, similar to CHERI [45]. In contrast to CHERI, we
did not extend the instruction set architecture, but the DTU
acts as a device attached to the core.

In the current implementation, the software polls a DTU
register to wait for received messages or completed memory
transfers. In future work, we will put the core into a low-
power state and the DTU will wake it up for these events.

4.4.2 Messages
Messages consist of a header and a payload. The header
is automatically prepended to the payload by the DTU and
contains a label, the length of the message, and information
for a potential reply (see Section 4.4.4). A label, originally
introduced by KeyKOS [19] as numeric tag, is a value that
is chosen by the receiver when the channel is created and
unforgeable by the sender to securely identify the sender.
Typically, the receiver sets it to the address of the object that
corresponds to the sender, so that no additional lookup in a
hash table or a similar data structure is necessary to find the
object needed for the requested operation.

We believe that device interrupts should be sent as mes-
sages as well to integrate them with the existing concepts.
This would allow to wait for them as for any other message,
interpose them, sent them to any PE, independent of the core,
etc. However, we have not yet implemented this idea, be-
cause of the lack of devices in the prototype platform.

4.4.3 Ringbuffer
Ringbuffers at the receive endpoints allow receivers to si-
multaneously accept messages from multiple senders. Ring-
buffers are allocated in the local memory of the PE and or-
ganized in fixed-size slots. The size of the slots, which cor-

194

responds to the maximum message size, is configurable per
endpoint. Upon the reception of a message, the DTU writes
the received message at the current write position in the ring-
buffer and moves the write position forward. The software
in turn advances the buffer’s current read position to indi-
cate that a message has been processed. To manage the ring-
buffer space, we use a credit system, similar to the one in
Intel QuickPath [2]. That is, the receiver hands out credits
to its senders and thereby limits the number of messages per
sender. If a sender has no credits left, message sending is
denied by the DTU until the credits have been refilled by ei-
ther the receiver (typically when replying) or an OS kernel.
For most scenarios, the receiver should not hand out more
credits than buffer space is available, because messages are
dropped if no space is left.

4.4.4 Replies
A channel is unidirectional in the sense that only the sender
can start a communication. But since a reply is an important
and also performance-critical operation, the DTU supports
direct replies on received messages without requiring a ded-
icated channel back to the sender.

To enable replies, the sender specifies any of its endpoints
as receive endpoint for the reply and transmit this informa-
tion to the receiver. We decided to store the reply information
in the message header, i.e., in the receiver’s ringbuffer. To re-
ply, the receiver selects the message to reply to and the DTU
accesses the message header to extract the destination. Nat-
urally, storing this security-critical information at a software
accessible location requires additional protection. Therefore,
if replies should be enabled for a ringbuffer, an OS kernel en-
sures these ringbuffers are placed in read-only memory and
do not overlap before configuring a receive endpoint.

4.5 Operating System
In parallel to the just described DTU, we have built an
operating-system prototype called M3, which is short for
microkernel-based system for heterogeneous manycores (or
L4 [27] ± 1), and follows the design introduced in Section 3.
M3 consists of a kernel, running on a dedicated PE3, OS
services and the library libm3.

4.5.1 Microkernel Approach
We chose to build the OS as a microkernel-based system.
That is, the kernel provides only the necessary mechanisms
to let applications implement the actual functionality of the
OS. In particular, filesystems, network stacks and drivers
are therefore implemented as applications; hence we use the
term application to refer to both user applications and OS
services in this paper.

Besides the well known security and reliability advan-
tages of microkernels, the DTU and our approach of having
dedicated application and kernel PEs eliminates the most im-

3 In the future, multiple instances of the kernel will be supported.

portant criticism of microkernels: Since message passing is
performed directly between applications via DTUs, without
kernel involvement or context or address-space switches, it
is very fast. As reported in Section 5, it is even faster than a
Linux system call on Xtensa and ARM.

4.5.2 Library
The library libm3 provides abstractions for communicating
with the kernel or OS services, accessing files, using the
DTU etc. and contains only little architecture-specific code.
Currently, only the PE initialization is architecture-specific,
which makes libm3 easily portable to architectures other
than Xtensa. Due to the small SPMs in our prototype, which
we believe is a common limitation of accelerators and other
PEs without kernel support, libm3 provides lightweight ab-
stractions rather than a POSIX-compliant environment. This
choice also results in performance improvements, as demon-
strated in the evaluation.

4.5.3 Capabilities
Inspired by L4 microkernels [23, 26, 42], M3 uses capabili-
ties to manage the permissions of applications. A capability
is thereby a pair consisting of a kernel object and permis-
sions for this object. The kernel maintains a table of capa-
bilities per VPE, similar to the file descriptor table in UNIX
systems.

M3 provides two operations to exchange capabilities be-
tween VPEs (delegate and obtain) and one operation to undo
the exchange (revoke):

1. Delegate: Grant another VPE access to a capability.

2. Obtain: Request access to a capability from another VPE.

3. Revoke: Undo all grants of a capability recursively.

Naturally, VPEs can only delegate and revoke capabilities
they possess themselves. To revoke a capability recursively,
i.e., including all grants, the kernel maintains a tree that
records all delegation/obtain operations, similar to the map-
ping database found in some L4 microkernels [23, 26, 42].

In L4 microkernels, a capability exchange is performed
via inter-process communication (IPC). In particular, a sin-
gle message allows to exchange both information and capa-
bilities. In contrast, in M3, IPC does not involve the ker-
nel and is instead performed directly between applications.
However, to exchange capabilities, the kernel needs to be in-
volved as it manages all capabilities. For that reason, M3

offers two options to exchange capabilities, which are both
realized as system calls to the kernel: first, one can exchange
capabilities with another VPE, provided that the requesting
VPE has a capability for the other. Second, applications can
exchange capabilities with services. The second additionally
involves communication with the service to negotiate details
and allow the service to deny the capability exchange. The
required communication channel between kernel and service
is created at service registration. In the current prototype,

195

send and receive capabilities are virtualizable, i.e., they can
be interposed by a proxy to e.g., monitor the communica-
tion, but memory capabilities are not. This is due to the lack
of virtual memory support in our prototype platform.

4.5.4 Gates
A gate is the software abstraction used for communication
and memory access over the DTU. M3 provides three dif-
ferent kinds of gates:

• receive gates to receive messages,
• send gates to send messages to receive gates and
• memory gates to access remote memory.

As receive gates can receive messages at any point in
time, they can only be moved to different endpoints or PEs
after invalidating all connected send gates and ensuring that
no transfer is in progress. In contrast, send gates and memory
gates are easily movable. Hence, the kernel only allows
to delegate/obtain send and memory capabilities, but not
receive capabilities.

The kernel is responsible for managing the memories in
the system. That is, it decides which application can use
which parts of which memories. Our current prototype con-
tains only one DRAM module and all PEs have SPMs in-
stead of caches. Therefore, code, static data, heap, and stack
are placed in the SPM, owned by the application currently
running on that PE. Applications can however request a re-
gion of the DRAM via a system call to obtain a memory
gate, which provides access to the region via explicit data
transfers over the DTU.

To actually send messages or access memory, receiving
a send or memory gate is not sufficient. A kernel needs to
configure an endpoint at the application PE first, which is
requested via a system call, because only a kernel has the
permissions to configure endpoints. This indirection allows
a kernel to defer the reply to the system call until the re-
ceiver is ready to receive messages. Furthermore, since the
DTU provides only a limited number of endpoints (8 in our
prototype platform) and applications might need more send
gates or memory gates4 than endpoints are available, mul-
tiplexing is used to share the endpoints among these gates.
This is done by libm3, which checks before the usage of a
gate whether the endpoint is appropriately configured. If not,
the corresponding system call is performed.

4.5.5 Virtual PEs
Applications consist of multiple Virtual PEs, whereas each
VPE is bound to a specific PE at any point in time. Although
our current prototype does not yet support it, we plan to
allow the migration of VPEs and also time-sharing of PEs
among multiple VPEs. As far as the kernel is concerned,

4 Multiplexing is currently unsupported for receive gates, because they are
more difficult to move, as described before.

each VPE represents a single activity, i.e., does not use
parallelism. Instead, new VPEs can be created to make use of
more than one PE. However, an application is of course free
to implement user-level thread-switching on a single PE or,
if a PE supports it, use a timer interrupt and a small interrupt
routine to switch between threads preemptively.

VPEs are created via a system call to the kernel, which
instructs the kernel to select a suitable and unused PE.
Thereby, the application can request a specific type of PE
– for example a specific accelerator. If found, the kernel cre-
ates a VPE kernel object and a VPE capability for the VPE
that requested it. Furthermore, the requesting VPE receives
a memory gate for the memory that the VPE can access.
In the current prototype, the memory gate refers to the lo-
cal memory of the PE. If caches are available, it will be
some PE-external memory and the kernel will configure the
cache/DTU to access it.

The memory gate is used by libm3 to perform applica-
tion loading as it provides complete control of the PE. libm3
supports two operations: First, applications can clone them-
selves onto this PE, similar to a fork in UNIX. Second,
they can load an executable from the filesystem (see Sec-
tion 4.5.8) onto the PE, similar to exec. The former is in-
tended only for homogeneous PEs, the latter for both homo-
geneous and heterogeneous PEs.

When using the clone operation, libm3 transfers the code,
static data, the used portion of the heap and the stack to
the corresponding locations of the memory denoted by the
memory gate. Since each PE has its own local memory, this
does neither require virtual memory nor position indepen-
dent code: the regions are simply copied to the same ad-
dresses in the other PE.

In the current C++ implementation of libm3, the clone
operation can be used to execute C++ lambdas on other PEs,
as the following example shows:

i n t a = 4 , b = 5 ;
VPE vpe (” t e s t ”) ;
vpe . run ([a ,&b] () {

auto &s = S e r i a l : : g e t () ;
s << ”Sum : ” << (a + b) << ”\n ” ;
re turn 0 ;

}) ;
i n t r e s u l t = vpe . w a i t () ;

At first, the VPE is created via a system call, selecting
a PE of the same type as the requesting PE in this case.
Second, all state is copied to the other PE and the given
function is called. Arguments can be passed to the lambda by
capturing them – either by value or by reference. However,
since our prototype platform does not support to access PE-
external memories with load/store instructions, values of the
caller cannot be directly manipulated. Instead, this has to
be done explicitly by using message passing or memory
gates. This can be achieved by exchanging capabilities with
the VPE before and/or after running the lambda. Note that

196

the execution of the lambda happens asynchronously. The
method wait can be called to wait until the lambda has
finished execution and to receive an exit code. In case the
lambda does not return after some time, the owner of the
VPE capability could revoke it to let the kernel reset the
associated PE, thereby making it available again for others.

4.5.6 Message Passing
We chose to make message passing asynchronous on the
lowest level. That is, after a message is sent, which is done
by programming the memory-mapped registers of the DTU
accordingly, the application is free to perform other work
until the reply has been received (if any is expected). This
is because the kernel is executing on a different PE and not
involved if two applications communicate. Since an asyn-
chronous model is often more difficult, most abstractions of
libm3 combine the send operation with waiting for the reply,
making it synchronous again.

To simplify the message-based communication, libm3
provides easy-to-use C++ abstractions for marshalling and
unmarshalling. Inspired by previous L4 marshalling frame-
works [15], it overloads the C++ shift operators to marshal
an object into the message or unmarshal it again.

4.5.7 Pipes
Based on the so far described basic primitives, libm3 offers
a pipe concept, similar to a pipe in UNIX. On M3, a pipe
is a unidirectional data channel between exactly one writer
and exactly one reader. The data is thereby transferred over
a software-managed ringbuffer in the DRAM, to which both
reader and writer have access. Although the SPM and the
ringbuffer provided by the DTU could be used, we decided
in favor for the DRAM, because the SPM might be too small,
if an application needs several pipes to other applications. By
using the DRAM, large ringbuffers can be used to maximize
the parallelism of readers and writers.

To manage access to the ringbuffer, messages are used
to synchronize reader and writer. That is, after writing new
data to the ringbuffer, the writer notifies the reader with a
message, which in turn will read the data from the ringbuffer,
after it received the message. In this way, the state of the
ringbuffer is exchanged with messages, while the ringbuffer
in DRAM contains only the data that is transmitted through
the pipe. It is important to note that, after setting up the pipe,
the kernel is not involved in the communication. That is, the
actual pipe-based communication happens directly between
the PE of the reader and PE of the writer.

4.5.8 Filesystem
As a filesystem is an essential and performance-critical com-
ponent of an OS, we have designed and implemented a
filesystem, called m3fs, as a proof of concept for a service
provided by an application in M3. m3fs is currently an in-
memory filesystem, because our prototype platform lacks
persistent storage. However, the organization of the data has

been chosen to be suitable for persistent storage as well, so
that we can support it later.

For opening files, closing files, meta-data operations like
mkdir, link etc., the service is contacted to perform these
operations. The actual data transfers are done without in-
volving m3fs, because the applications directly read or write
to the memory, where the file is stored5. The application
needs to ask m3fs for the locations of the file fragments
that it wants to access first. m3fs will then delegate mem-
ory capabilities for the requested fragments in memory to
the application. The concept is therefore somewhat similar
to GoogleFS [17], where meta-data is separated from data
storage as well.

The filesystem is organized like classical UNIX filesys-
tems, consisting of a superblock, an inode and block bitmap,
an inode table and directories with pointers to the inodes.
The data of an inode is stored in a tree of tables containing
extents. As in other modern filesystems [32, 38], an extent
is a pair of a starting block number and a number of blocks.
The reason for this organization is that the applications get
access to the data in form of memory capabilities, represent-
ing contiguous pieces of memory. To maximize the perfor-
mance and scalability, these pieces of memory should be as
large as possible to reduce the number of times m3fs has to
be contacted. Storing the contiguous pieces in the form of
extents avoids the need to first scan through a list of block
numbers to determine the contiguous pieces.

To relieve the application programmers from obtaining
memory capabilities from m3fs, determining at which offset
of that memory the application needs to access etc., libm3
offers POSIX-like abstractions (open, read, write, seek,
close, . . .) to the application. That is, the application uses a
local buffer for reading and writing, and libm3 will translate
that into memory reads or writes at the appropriate location
and will, if necessary, request further memory capabilities.

In this way, we optimize the data transfers for perfor-
mance and scalability, because we believe that they are more
performance-critical than meta-operations. For example, be-
cause a file consists of a list of extents, each potentially hav-
ing a different length, seeking gets more expensive. How-
ever, most seek operations can be done in libm3 by seeking
within the already obtained memory capabilities (extents).

A further consequence of this design is that, even if m3fs
is storing the data in random access memory, like in our pro-
totype, the fragmentation of files (of how many extents they
consist) is important. The reason is, that the more extents
a file has, the more often the application needs to communi-
cate with m3fs to request further memory capabilities. Addi-
tionally, the seeking performance suffers with an increasing
number of extents. For that reason, write operations extend
files by a large number of blocks at once to minimize the

5 In the current prototype, files are already in DRAM. If persistent storage
was involved, m3fs would first load the file into DRAM, i.e., into the buffer
cache.

197

fragmentation and the close operation truncates it to the ac-
tually used space. As the evaluation in Section 5.7 shows,
as long as the extents are sufficiently large, the performance
degradation with multiple extents is minimal.

To support multiple filesystems, libm3 offers a virtual
filesystem (VFS) that allows to mount filesystems at specific
paths. Besides m3fs, it provides a pipe filesystem to integrate
pipes into the VFS, making it transparent for applications
whether they access a pipe or a file in m3fs.

5. Evaluation
Our evaluation strives to answer the following questions:

• How fast are system calls via DTU?
• How fast are file operations with m3fs?
• What is the performance impact of file fragmentation?
• How fast are OS-intensive applications?
• How far does M3 scale with a single service/kernel?
• What performance can be achieved by accelerators?

5.1 Methodology
To answer these questions, we compare our prototype to
Linux in as many benchmarks as possible. We used two
general approaches: first, we conducted micro-benchmarks
to compare the performance of system calls and filesystem
operations. Second, to prevent large porting efforts, we ob-
tained traces from applications on Linux to compare both
OSes in more realistic settings. Due to prohibitively long
simulation times, we could not use standard benchmarks, but
were required to use short running applications.

For both M3 and Linux we used cycle-accurate sim-
ulators, whose computation performances are equivalent.
M3 was running on the Tomahawk platform, which can be
started with an arbitrary number of PEs, each containing
64 KiB of SPM for instructions and 64 KiB for data with
no caches and no MMU. Linux 3.18 was running on the
simulator provided by Cadence with an Xtensa core, which
contains an instruction and data cache, each with a capac-
ity of 64 KiB, and an MMU. Furthermore, we configured the
cost for a cache miss on Linux to be equivalent to the transfer
time for loading a cache line (32 Bytes) via the DTU. That
is, loading data from DRAM takes the same time in both se-
tups. Due to the larger variation of the results on Linux, we
discarded the results of the first two runs of all benchmarks
to ensure that the caches are warm. For results still subject
to a standard deviation of more than 1%, we show error bars
in the figures.

Unfortunately, Linux does not provide support for multi-
ple PEs in the simulator. To achieve a fair comparison, we
made sure that, if comparing to Linux, M3 did not take ad-
vantage of multiple PEs, i.e., at no point in time multiple PEs
were doing useful work in parallel. This is because a second
PE was only involved if the first PE sent a message to the

M
3

L
x

L
x
−

$

Syscall

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

T
im

e
 (

c
y
c
le

s
)

M
3

L
x

L
x
−

$

Read

0
2

4
6

8

T
im

e
 (

M
 c

y
c
le

s
)

M
3

L
x

L
x
−

$

Write

Xfers
Other

M
3

L
x

L
x
−

$

Pipe

Figure 3. Comparison of system calls and file operations.
Lx-$ shows the time on Linux without cache misses.

second, in which case the first one waited until the second
one replied, so that the execution merely transitioned from
PE to PE.

5.2 Linux on Xtensa vs. Linux on ARM
To ensure that our results are not specific to Xtensa, because
e.g., Linux could be less optimized for Xtensa than for other
architectures, we did also run some of the benchmarks on an
ARM Cortex-A15. Apart from data transfers being slower
on Xtensa, because the core does not have a cache line
prefetcher (see Section 5.4 for more details), which prevents
Xtensa to saturate the memory bandwidth, we saw compa-
rable results. For example, a Linux system call requires 320
cycles on ARM and 410 cycles on Xtensa, creating a 2 MiB
large file has 2.4 million cycles overhead on ARM and 2.2
million cycles on Xtensa, and copying a 2 MiB file has 3.2
million cycles overhead on both architectures.

5.3 System Calls
System calls on M3 are done by sending a message via
the DTU to the kernel PE and waiting for the reply of the
kernel, while classical system calls switch from user mode
into privileged mode on the same PE. To compare their
performance, we performed a null system call on both M3

and Linux, i.e., the system call function has an empty body.
As can be seen in the left part of Figure 3, a system call on
M3 via DTU takes about 200 cycles, while it takes about 410
cycles on Linux. On M3, the actual message transfers take
about 30 cycles and the other 170 cycles are required for
marshalling the messages, programming the DTU registers,
unmarshalling the messages and figuring out the system call
function to call. On Linux, most of the time is spent with
saving and restoring the machine state, because the user
application and the kernel share these hardware resources.
Note that on Linux, we have removed outliers caused by
interrupts from the results since they would have had large
effects on the standard deviation in this case due to the short
time for a single system call.

198

5.4 Filesystem and Pipe
Next, we conducted micro-benchmarks to evaluate m3fs and
pipes. Since m3fs is an in-memory filesystem, we compared
it to Linux’s tmpfs. For all our benchmarks, we transferred
2 MiB of data, using a buffer size of 4 KiB, because 4 KiB
is the sweet spot on Linux (M3 benefits from larger buffer
sizes until all available space in the SPM is used for the
buffer). On M3, the file was not fragmented (see Section 5.5
for the influence of fragmentation) and m3fs used a block
size of 1 KiB. On Linux, tmpfs used a block size 4 KiB. We
performed the following benchmarks:

1. Read: read a file, discarding the data,

2. Write: write precomputed data into a new file, and

3. Pipe: transfer data between two processes/VPEs.

On Linux, all three benchmarks used read/write system
calls to perform the transfer. We also compared copying a
file using mmap on Linux, but do not show it here, because
of Linux’s bad performance due to cache thrashing between
the page fault handling of the kernel and the memcpy of the
application. On M3, the time for copying is the sum of the
times for reading and writing the file.

To understand the differences between M3 and Linux,
we have broken down the results into the time for the data
transfer (“Xfers”) using the DTU or memcpy in the kernel,
and the remaining time (“Other”). As Figure 3 shows, a
large portion of the difference is made up by data transfers.
This is because the data transfer on M3 is performed by the
DTU, which transfers 8 Byte per cycle without involving
the core (similar to DMA). In contrast to that, Linux is
copying the data via memcpy. Unfortunately, Xtensa does
not have a cache line prefetcher, which could detect the data
access pattern of memcpy and thus prefetch the next cache
lines in the background. Therefore, memcpy cannot saturate
the memory bandwidth on Xtensa. We believe that, with a
cache line prefetcher and load/store instructions that operate
on more bytes at once, the transfer time could reach the
theoretical limit of 8 Byte per cycle, like with the DTU.

Apart from the differences for the data transfers, Figure 3
shows that M3 incurs much less OS overhead. This is be-
cause on Linux, a system call is done for every 4 KiB block,
doing in part the same work over and over again. On M3,
after the locations of the file fragments in the DRAM have
been obtained, only libm3 is involved, which only needs to
determine where to read or write. For example, read on
Linux requires ∼380 cycles for entering/leaving the kernel,
∼400 cycles for retrieving the file pointer, doing security
checks and executing function prologs/epilogs and∼550 cy-
cles for page cache related operations (get, put, etc.). M3

on the other hand needs ∼70 cycles to get to the read func-
tion and ∼90 cycles to determine the location for reading.

Another difference is that Linux is overwriting each block
with zeros before handing it out to a writing application,

Blocks per extent

T
im

e
 (

K
 c

y
c
le

s
)

16 32 64 128 256 512 1024 2048

0
6
0
0

1
2
0
0 Reading

Writing

Figure 4. Read/write time, depending on file fragmentation

M
3

L
x

L
x
−

$

cat+tr

0
1

2
3

4
5

6

T
im

e
 (

c
y
c
le

s
)

App
Xfers
OS

M
3

L
x

L
x
−

$

tar

M
3

L
x

L
x
−

$

untar

M
3

L
x

L
x
−

$

find

M
3

L
x

L
x
−

$

sqlite

Figure 5. Comparison with application-level benchmarks.
Lx-$ shows the time on Linux without cache misses.

while m3fs can instruct the DTU to zero blocks in the back-
ground, i.e., in parallel to handling requests. In the bench-
marks, we assume that enough zero blocks are available,
which will be the case in realistic scenarios since there will
always be time where m3fs is idling.

5.5 Impact of File Fragmentation
As mentioned, the performance of reading and writing files
with m3fs depends on file fragmentation, i.e., the number of
extents the file consists of. To quantify this, we ran the read-
/write benchmarks with varying numbers of extents per file,
as shown in Figure 4. That is, for reading, the 2 MiB large
file was prepared to have 16 to 2048 blocks per extent. And
for writing we let the application allocate the correspond-
ing number of blocks at once. As the results show, the sweet
spot is 256 blocks, so that we chose to allocate that number
of blocks at once when appending to a file. This leads to a
good write performance and will probably also limit the file
fragmentation, so that the read performance is good as well.

5.6 Application-level Benchmarks
To compare M3 to Linux in more realistic settings, we per-
formed application-level benchmarks. Since the computa-
tion performance of the cores is identical for both M3 and
Linux, we chose mostly applications that make extensive use
of the OS. For a more compute-heavy application, we used
sqlite. We ran the following five benchmarks:

1. cat+tr: creates a child process/VPE and lets it write a
64 KiB large file into a pipe, while the parent reads from

199

that pipe, replaces all occurrences of “a” with “b” and
writes the result into a new file

2. tar: creates a tar archive with files between 60 and
500 KiB and 1.2 MiB in total

3. untar: unpacks the same tar archive

4. find: searches for files within a directory tree of 40 items

5. sqlite: creates a table, inserts 8 entries and selects them

As the first benchmark is simple to implement, we did
that ourselves, using the same code for M3 and Linux, ex-
cept for programming against libm3 in case of the former.
The reasons for including it in the benchmarks are that it uses
all presented concepts of M3 (application loading, pipes,
and the filesystem) and that all of them have their equivalent
on Linux. The other four benchmarks were first run on Linux
with BusyBox [1], once running it with strace and again to
record the execution times of the performed syscalls (to ex-
clude the overhead of strace). The results were combined
into a data structure that specifies which syscall to execute
including its arguments. For all unsupported syscalls6 and
for the computation time, wait commands were inserted into
the data structure. On M3, we ran a program that replays the
syscalls from the data structure using the corresponding API
on M3 or waits as long as specified. That is, we assume that
computation and the unsupported syscalls require the same
time on both systems.

The results are shown in Figure 5, which we have broken
down into the time for the application (computation and on
M3 unsupported system calls), data transfers and the OS
overhead to explain the differences between M3 and Linux.
Note however, that the results are in favor of Linux because
on Linux, only the system call itself (e.g., open) is added to
the OS overhead, while the time spent in a library call (e.g.,
fopen) is added to the application time. On M3, the entire
library call is added to OS overhead.

In case of cat+tr, M3 is about twice as fast, which stems
from VPE::run being faster than fork, less overhead for
accessing files/pipes and the avoidance of context switches.
Note that, as mentioned, although both the reader and writer
are running time-multiplexed on one core on Linux, M3

does not take advantage of the two cores involved. That
is, like Linux with multiple cores, M3 could achieve better
performance by letting reader and writer work in parallel.

For tar and untar, M3 requires only 20% and 16%, re-
spectively, of the time Linux takes. This is caused on the one
hand by faster data transfers and on the other hand by less OS
overhead for read and write, as already described in Sec-
tion 5.4. However, Linux does not suffer from many system
calls in this case, because both benchmarks use sendfile

to transfer the data.

6 In these benchmarks, we ignored access, ioctl, getuid, geteuid,
getpid, getrlimit, setrlimit, rt sigaction, rt sigprocmask,
brk, fcntl, fchown, chown, chmod and chdir.

of Application PEs

T
im

e
 (

n
o
rm

a
liz

e
d
)

1 2 4 8 16

1
.0

2
.0

cat+tr

tar

untar

find

sqlite

Figure 6. Scalability of the OS design, showing the average
time per benchmark instance, normalized to the time with
only one benchmark instance (flatter is better).

Find shows a different picture as Linux is slightly faster
than M3. This is because find consists mostly of stat calls,
which work similarly on both systems. On Linux, a tradi-
tional syscall is done, which searches for the inode denoted
by the given path, whereas M3 does the same by calling
m3fs, using message passing. Furthermore, stat is well op-
timized on Linux, so that M3 is actually a bit slower.

Finally, sqlite is only slightly faster on M3, because com-
putation makes up the majority of the execution time.

5.7 Scalability
Another interesting point of this OS design is of course the
scalability. Before using multiple instances of services or the
kernel, we wanted to evaluate how far it scales using a sin-
gle instance. That is, how many PEs a single instance can
handle without significantly decreasing the performance. To
evaluate that, we ran the application-level benchmarks again,
with varying number of benchmark instances7 in parallel.
That is, we run one instance of the same problem on each
core, so that equal time per instance means perfect scala-
bility. Thereby, we replaced the reading/writing from/to the
DRAM with a spinning loop of the same time to evaluate
only the scalability of the software, i.e., we assume that the
NoC (in terms of memory transfers; messages are still sent)
and the DRAM scale perfectly.

As the results in Figure 6 indicate, all benchmarks scale
very well with up to 4 instances, while degrading a bit with
8 instances. Using 16 instances, the performance of find and
untar decreases significantly, while tar and sqlite are still
acceptable and cat+tr show nearly no degradation. Thus,
we believe that a single service/kernel instance can handle
at least 8 PEs. Of course, cat+tr scales almost perfectly
because after the setup phase, only the reader and writer
communicate with each other. The sqlite benchmark spends
the majority of the time with computation, so that it scales
very well. For tar and untar, most of the time, files are read
and written, which scales almost perfectly, too. Occasionally
in tar and untar and quite often in find, m3fs is called, which
queue up with an increasing number of benchmark instances.

7 Since cat+tr requires two PEs per benchmark instance, there are no results
for 1 Application PE.

200

Linux M3 M3+accelerator

T
im

e
 (

M
 c

y
c
le

s
)

0
.0

1
.0

2
.0

3
.0

FFT

Xfers

OS

Figure 7. Performance benefits of an FFT accelerator core.

5.8 Accelerator
So far, the benchmarks used standard Xtensa cores. To show
the feasibility of integrating an accelerator and to demon-
strate the performance advantages, we added a core with in-
struction extensions for a fast fourier transformation (FFT)
to our prototype platform. In mobile communication, FFTs
are typically used within a filter chain, where e.g., data is re-
ceived over the mobile network, transformed using the FFT,
and passed forward to the next element in the chain. Thus,
we built a similar scenario that lets an application (the par-
ent) create a VPE, assigned to the FFT core. Afterwards,
it executes the FFT application (the child) on that VPE and
creates a pipe between itself and the child. The parent is gen-
erating random numbers, 32 KiB of data in total, and writes
them into the pipe, while the child reads from that pipe, per-
forms the FFT and writes the result into a file (it could be
another pipe as well).

To show the performance benefits, we ran this benchmark
first on Linux using a software FFT, second, on M3 using
only standard Xtensa cores with the same software FFT, and
third, on M3 using the FFT accelerator. It is worth noting
that the code for the parent is identical for the software
version and the accelerator version. It merely receives a
different path to the executable to run on the VPE. The
results in Figure 7 show at first, that the accelerator has a
huge performance benefit over the software version (about
a factor of 30). Second, exec, the pipe communication and
the write to the file on Linux has much more overhead than
their equivalent on M3, especially compared to the FFT
time when using the accelerator. This shows that the fast
abstractions of M3 lower the bar for using accelerators.

6. Conclusion
In this paper, we presented a new point in the design space
for operating systems (OSes) by co-designing the OS with
the hardware to support arbitrary cores as first-class citizens.
That is, we support isolation on all cores to run untrusted
code and provide access to OS services on all cores. This is
achieved by abstracting from the heterogeneity of the cores
by introducing a common hardware component, called data
transfer unit (DTU), next to each core that supports remote
memory access and message passing. By leveraging the fact
that it is expected that future platforms will contain a large
number of cores, we introduce kernel cores, where only the
kernel is running and application cores, which are owned

by one application at a given time. Cores and thus applica-
tions are thereby isolated at the network-on-chip-level via
remotely controlling their DTUs, because a DTU is the only
component that has access to core-external resources.

We demonstrated the feasibility of this design by im-
plementing the DTU and the OS for a prototype platform,
whose cores do not have support for an OS kernel and where
we could integrate accelerators. We showed how basic OS
abstractions like application loading, pipes, and filesystems
can be built and that they work across heterogeneous cores.
In our evaluation, we illustrated how this design can outper-
form Linux in some application-level benchmarks by more
than a factor of five without exploiting accelerators.

7. Future Work
As we have laid the foundation for supporting arbitrary PEs
as first-class citizens by starting with the challenging part of
building an OS for PEs without kernel support in this work,
we will extend this to more feature-rich PEs in future work.
In particular:

• We plan to add caches to the PEs or replace the SPM with
caches. The cache will use the DTU to load/store cache
lines from/into DRAM. In this way, the DTU remains the
only component with access to PE-external resources and
it thus suffices to control the DTU.

• Furthermore, we want to support virtual memory to en-
able copy-on-write, demand paging, etc. This can be done
by by managing the page tables remotely, similarly to
managing the DTU endpoints remotely.

• Finally, we plan to support POSIX-compliant applica-
tions. So far, our prototype platform prevented us from
directly running existing and complex applications due to
the small SPM and the distributed memory architecture.
As soon as caches and virtual memory are supported, we
will add a POSIX emulation layer, similar to the already
existing emulation layer for the filesystem API, that was
used to replay system call traces.

As already mentioned in the paper, we currently do not
support multiple instances of services or the kernel, because
we wanted to explore first how far a single instance can scale.
In the future, we will design synchronization protocols to
allow multiple instances.

8. Acknowledgments
We would like to thank our shepherd, Gernot Heiser, the
anonymous reviewers, Björn Brandenburg, Jeronimo Cas-
trillon, Pramod Bhatotia, and Michael Roitzsch for their
helpful suggestions. This work is in part funded through the
German Research Council DFG through the Cluster of Ex-
cellence Center for Advancing Electronics Dresden (cfaed).

201

References
[1] BusyBox. http://www.busybox.net/. last checked:

01/19/2015.

[2] An introduction to the Intel R© QuickPath interconnect. http:
//www.intel.de/content/dam/doc/white-paper/

quick-path-interconnect-introduction-paper.

pdf. last checked: 01/19/2015.

[3] J. Ahn, M. Fiorentino, R. G. Beausoleil, N. Binkert, A. Davis,
D. Fattal, N. P. Jouppi, M. McLaren, C. M. Santori, R. S.
Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu. Devices
and architectures for photonic chip-scale integration. Applied
Physics A, 95(4):989–997, 2009.

[4] R. Alpert, C. Dubnicki, E.W. Felten, and K. Li. Design and
implementation of NX message passing using Shrimp virtual
memory mapped communication. In Proceedings of the 1996
International Conference on Parallel Processing, volume 1,
pages 111–119, Aug 1996.

[5] Oliver Arnold, Emil Matus, Benedikt Noethen, Markus Win-
ter, Torsten Limberg, and Gerhard Fettweis. Tomahawk: Par-
allelism and heterogeneity in communications signal process-
ing MPSoCs. ACM Transactions on Embedded Computing
Systems, 13(3s):107:1–107:24, March 2014.

[6] F.J. Ballesteros, N. Evans, C. Forsyth, G. Guardiola, J. McKie,
R. Minnich, and E. Soriano-Salvador. NIX: A case for a
manycore system for cloud computing. Bell Labs Technical
Journal, 17(2):41–54, 2012.

[7] Antonio Barbalace, Marina Sadini, Saif Ansary, Christopher
Jelesnianski, Akshay Ravichandran, Cagil Kendir, Alastair
Murray, and Binoy Ravindran. Popcorn: Bridging the pro-
grammability gap in heterogeneous-ISA platforms. In Pro-
ceedings of the Tenth European Conference on Computer Sys-
tems (EuroSys ’15), pages 29:1–29:16, New York, NY, USA,
2015. ACM.

[8] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim
Harris, Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian
Schüpbach, and Akhilesh Singhania. The multikernel: A new
OS architecture for scalable multicore systems. In Proceed-
ings of the ACM SIGOPS 22nd Symposium on Operating Sys-
tems Principles (SOSP ’09), pages 29–44, New York, NY,
USA, 2009. ACM.

[9] Cadence. Xtensa customizable processor. http://ip.

cadence.com. last checked: 01/19/2015.

[10] Koushik Chakraborty, Philip M. Wells, and Gurindar S. Sohi.
Computation spreading: Employing hardware migration to
specialize CMP cores on-the-fly. In Proceedings of the 12th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS XII),
pages 283–292, New York, NY, USA, 2006. ACM.

[11] Emilio G. Cota, Paolo Mantovani, Giuseppe Di Guglielmo,
and Luca P. Carloni. An analysis of accelerator coupling in
heterogeneous architectures. In Proceedings of the 52nd An-
nual Design Automation Conference (DAC ’15), pages 202:1–
202:6, New York, NY, USA, 2015. ACM.

[12] R.H. Dennard, V.L. Rideout, E. Bassous, and A.R. LeBlanc.
Design of ion-implanted MOSFET’s with very small physical

dimensions. Solid-State Circuits, IEEE Journal of, 9(5):256–
268, Oct 1974.

[13] Jack B. Dennis and Earl C. Van Horn. Programming semantics
for multiprogrammed computations. Communications of the
ACM, 9(3):143–155, March 1966.

[14] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion
Hodson, Galen Hunt, James R. Larus, and Steven Levi. Lan-
guage support for fast and reliable message-based commu-
nication in Singularity OS. In Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer Sys-
tems, pages 177–190, New York, NY, USA, 2006. ACM.

[15] Norman Feske. A case study on the cost and benefit of
dynamic RPC marshalling for low-level system components.
ACM SIGOPS Operating Systems Review, 41(4):40–48, July
2007.

[16] L. Fiorin, G. Palermo, S. Lukovic, V. Catalano, and C. Sil-
vano. Secure memory accesses on networks-on-chip. IEEE
Transactions on Computers, 57(9):1216–1229, Sept 2008.

[17] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
The Google file system. In Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles (SOSP
’03), pages 29–43, New York, NY, USA, 2003. ACM.

[18] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki.
Toward dark silicon in servers. IEEE Micro, 31(4):6–15, July
2011.

[19] Norman Hardy. KeyKOS architecture. ACM SIGOPS Oper-
ating Systems Review, 19(4):8–25, October 1985.

[20] John Heinlein, Kourosh Gharachorloo, Scott Dresser, and
Anoop Gupta. Integration of message passing and shared
memory in the Stanford FLASH multiprocessor. In Proceed-
ings of the Sixth International Conference on Architectural
Support for Programming Languages and Operating Systems,
pages 38–50, New York, NY, USA, 1994. ACM.

[21] K.U. Jarvinen and J.O. Skytta. High-speed elliptic curve cryp-
tography accelerator for koblitz curves. In 16th International
Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM ’08), pages 109–118, April 2008.

[22] Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, Amir
Wated, Emmett Witchel, and Mark Silberstein. GPUnet: Net-
working abstractions for GPU programs. In Proceedings of
the International Conference on Operating Systems Design
and Implementation, pages 6–8, 2014.

[23] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June An-
dronick, David Cock, Philip Derrin, Dhammika Elkaduwe,
Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal
verification of an OS kernel. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles,
pages 207–220, New York, NY, USA, 2009. ACM.

[24] George Kurian, Jason E. Miller, James Psota, Jonathan Eastep,
Jifeng Liu, Jurgen Michel, Lionel C. Kimerling, and Anant
Agarwal. ATAC: A 1000-core cache-coherent processor with
on-chip optical network. In Proceedings of the 19th Interna-
tional Conference on Parallel Architectures and Compilation
Techniques (PACT ’10), pages 477–488, New York, NY, USA,
2010. ACM.

202

http://www.busybox.net/
http://www.intel.de/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
http://www.intel.de/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
http://www.intel.de/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
http://www.intel.de/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
http://ip.cadence.com
http://ip.cadence.com

[25] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Si-
moni, K. Gharachorloo, J. Chapin, D. Nakahira, J. Baxter,
M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. The
Stanford FLASH multiprocessor. In Proceedings of the 21st
Annual International Symposium on Computer Architecture,
pages 302–313, Apr 1994.

[26] Adam Lackorzynski and Alexander Warg. Taming subsys-
tems: Capabilities as universal resource access control in L4.
In Proceedings of the Second Workshop on Isolation and In-
tegration in Embedded Systems (IIES ’09), pages 25–30, New
York, NY, USA, 2009. ACM.

[27] J. Liedtke. On micro-kernel construction. In Proceedings of
the Fifteenth ACM Symposium on Operating Systems Princi-
ples (SOSP ’95), pages 237–250, New York, NY, USA, 1995.
ACM.

[28] Kevin Lim, David Meisner, Ali G. Saidi, Parthasarathy Ran-
ganathan, and Thomas F. Wenisch. Thin servers with smart
pipes: Designing SoC accelerators for memcached. In Pro-
ceedings of the 40th Annual International Symposium on
Computer Architecture (ISCA ’13), pages 36–47, New York,
NY, USA, 2013. ACM.

[29] Felix Xiaozhu Lin, Zhen Wang, and Lin Zhong. K2: A mo-
bile operating system for heterogeneous coherence domains.
In Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS ’14), pages 285–300, New York, NY, USA,
2014. ACM.

[30] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou,
Shengyuan Zhou, Olivier Teman, Xiaobing Feng, Xuehai
Zhou, and Yunji Chen. PuDianNao: A polyvalent machine
learning accelerator. In Proceedings of the Twentieth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, pages 369–381. ACM,
2015.

[31] K. Mackenzie, J. Kubiatowicz, M. Frank, W. Lee, W. Lee,
A. Agarwal, and M.F. Kaashoek. Exploiting two-case delivery
for fast protected messaging. In Fourth International Sym-
posium on High-Performance Computer Architecture, pages
231–242, Feb 1998.

[32] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, An-
dreas Dilger, Alex Tomas, and Laurent Vivier. The new ext4
filesystem: current status and future plans. In Proceedings of
the Linux Symposium, volume 2, pages 21–33, 2007.

[33] Edmund B. Nightingale, Orion Hodson, Ross McIlroy, Chris
Hawblitzel, and Galen Hunt. Helios: Heterogeneous multi-
processing with satellite kernels. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles
(SOSP ’09), pages 221–234, New York, NY, USA, 2009.
ACM.

[34] Mike Parker, Al Davis, and Wilson Hsieh. Message-passing
for the 21st century: Integrating user-level networks with
SMT. In Proceedings of the 5th Workshop on Multithreaded
Execution, Architecture and Compilation, 2001.

[35] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey,
et al. Plan 9 from Bell Labs. In Proceedings of the Summer
1990 UKUUG Conference, pages 1–9. London, UK, 1990.

[36] J. Porquet, A. Greiner, and C. Schwarz. NoC-MPU: A secure
architecture for flexible co-hosting on shared memory MP-
SoCs. In Design, Automation Test in Europe Conference Ex-
hibition (DATE), 2011, pages 1–4, March 2011.

[37] Wajahat Qadeer, Rehan Hameed, Ofer Shacham, Preethi
Venkatesan, Christos Kozyrakis, and Mark Horowitz. Convo-
lution engine: Balancing efficiency and flexibility in special-
ized computing. Communications of the ACM, 58(4):85–93,
March 2015.

[38] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: The
Linux B-tree filesystem. ACM Transactions on Storage (TOS),
9(3):9:1–9:32, August 2013.

[39] Christopher J. Rossbach, Jon Currey, Mark Silberstein,
Baishakhi Ray, and Emmett Witchel. PTask: Operating sys-
tem abstractions to manage GPUs as compute devices. In Pro-
ceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (SOSP ’11), pages 233–248, New York,
NY, USA, 2011. ACM.

[40] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett
Witchel. GPUfs: Integrating a file system with GPUs. In Pro-
ceedings of the Eighteenth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS ’13), pages 485–498, New York, NY, USA,
2013. ACM.

[41] Livio Soares and Michael Stumm. FlexSC: Flexible system
call scheduling with exception-less system calls. In Proceed-
ings of the 9th USENIX Conference on Operating Systems
Design and Implementation (OSDI ’10), pages 1–8, Berkeley,
CA, USA, 2010. USENIX Association.

[42] Udo Steinberg and Bernhard Kauer. NOVA: A
microhypervisor-based secure virtualization architecture.
In Proceedings of the 5th European Conference on Computer
Systems (EuroSys ’10), pages 209–222, New York, NY, USA,
2010. ACM.

[43] M.B. Taylor. A landscape of the new dark silicon design
regime. IEEE Micro, 33(5):8–19, Sept 2013.

[44] David Wentzlaff and Anant Agarwal. Factored operating sys-
tems (fos): The case for a scalable operating system for multi-
cores. ACM SIGOPS Operating Systems Review, 43(2):76–85,
April 2009.

[45] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Si-
mon W. Moore, Jonathan Anderson, Brooks Davis, Ben Lau-
rie, Peter G. Neumann, Robert Norton, and Michael Roe. The
CHERI capability model: Revisiting RISC in an age of risk.
In Proceeding of the 41st Annual International Symposium on
Computer Architecuture (ISCA ’14), pages 457–468, Piscat-
away, NJ, USA, 2014. IEEE Press.

[46] Lisa Wu, Raymond J. Barker, Martha A. Kim, and Kenneth A.
Ross. Navigating big data with high-throughput, energy-
efficient data partitioning. In Proceedings of the 40th Annual
International Symposium on Computer Architecture (ISCA
’13), pages 249–260, New York, NY, USA, 2013. ACM.

[47] Wei Yu and Yun He. A high performance CABAC decoding
architecture. IEEE Transactions on Consumer Electronics,
51(4):1352–1359, Nov 2005.

203

	Introduction
	Heterogeneity
	Second-class vs. First-class Citizens
	Abundantly Available Cores
	Contributions

	Related Work
	Hardware-Level Isolation and Message Passing
	Operating Systems

	Taming Heterogeneous Manycores
	Data Transfer Unit
	NoC-level Isolation
	Abundantly Available Cores
	Discussion

	Design and Implementation
	Prototype Platform
	Limitations
	Overview and Terminology
	Data Transfer Unit
	Endpoints
	Messages
	Ringbuffer
	Replies

	Operating System
	Microkernel Approach
	Library
	Capabilities
	Gates
	Virtual PEs
	Message Passing
	Pipes
	Filesystem

	Evaluation
	Methodology
	Linux on Xtensa vs. Linux on ARM
	System Calls
	Filesystem and Pipe
	Impact of File Fragmentation
	Application-level Benchmarks
	Scalability
	Accelerator

	Conclusion
	Future Work
	Acknowledgments

